When Modules Are Not Just Namespaces

It is time for Cone to get a proper module system. This design space is complex and rife with historical missteps. In order to distill the topography of the landscape and clarify the key requirements, I felt it necessary to begin the journey with cross-language research and contemplation. I wound up pursuing three rabbit-chasing adventures in module wonderland: What do programmers want from modularity? You can read about this adventure in my earlier post on modularity, which captures what we want from modularity, and summarizes how the three modularity capabilities are surfaced across different layers of programming language features (and program decomposition).

The Fascinating Influence of Cyclone

In 2001, Trevor Jim (AT&T Research) and Greg Morrisett (Cornell) launched a joint project to develop a safe dialect of the C programming language, an outgrowth of earlier work on Typed Assembly Language. After five years of hard work and some published papers, the team (including Dan Grossman, Michael Hicks, Nik Swamy, and others) released Cyclone 1.0. And then the developers moved on to other things. Few have heard of Cyclone and almost no one has used it.

Disinheriting Abstract Classes

Anti-inheritance advocates are likely to enthusiastically support this post. It promotes the most useful feature of traditional inheritance (Interfaces), turning it into a more valuable abstraction that is largely independent of inheritance. It discards two other traditional features of inheritance, Inversion of Control and Protected Access, as both unnecessary and dangerous. Let’s examine each in turn… Interfaces An interface is “an abstract type that contains no data but defines behaviors as method signatures.

Favor Composition Over Inheritance?

I need to decide what sort of inheritance capability Cone will offer. None! I can hear some of you insist. “Inheritance has recently fallen out of favor as a programming design solution,” claims the Rust language book. “Favor object composition over class inheritance,” recommends the Design Patterns book in 1994. “Inheritance is Evil.” insists Nicolò Pignatelli. It is not hard to find cogent, hard-hitting critiques of inheritance, complaining about costs incurred from fragile base classes, excessive coupling, and broken encapsulation.

Move Mechanics

Most programming languages support only copy semantics. A value passed to a function or stored in a variable is a copy of the original value. We know it is a copy, because any change we make to the copy has no impact on the original value. A few languages, like C++ and Rust, also support move semantics. Unlike a copy, a transfer moves the original value to its new home; that value is no longer accessible at its previous home.

The Challenge of Counting References

Note: The latter part of this post is outdated in terms of the mechanisms that the Cone compiler uses to de-alias ref-counted references. See this post for an updated description. In the world of automatic memory management, reference counting is considered to be one of the easiest to implement. The rules seem simple: When a reference is created to an allocated memory area, set its counter to 1 When the reference is copied (aliased), increment the counter When an alias is destroyed (de-aliased), decrement the counter When the counter reaches zero, free the reference’s memory area The simplicity of these rules does not always translate to a simple implementation.